MEM6804 Modeling and Simulation for Logistics and Supply Chain: Theory & Analysis

Sino-US Global Logistics Institute Shanghai Jiao Tong University

Spring 2021 (full-time)

Assignment 2

Due Date: April 7 (in class)

Instruction

- (a) You can answer in English or Chinese or both.
- (b) Show enough intermediate steps.
- (c) Write your answers independently.

.....

Question 1 (10 points)

Use Hölder's Inequality to prove that, for real numbers $a_i, b_i, i = 1, 2, ..., n$, and positive real numbers p and q such that 1/p + 1/q = 1,

$$\sum_{i=1}^{n} |a_i b_i| \le \left(\sum_{i=1}^{n} |a_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |b_i|^q\right)^{1/q}.$$

Question 2 (10 points)

Use Minkowski's Inequality to prove that, for real numbers $a_i, b_i, i = 1, 2, ..., n$, and real number $p \ge 1$,

$$\left(\sum_{i=1}^{n} |a_i + b_i|^p\right)^{1/p} \le \left(\sum_{i=1}^{n} |a_i|^p\right)^{1/p} + \left(\sum_{i=1}^{n} |b_i|^p\right)^{1/p}.$$

Question 3 (10 points)

For *positive* real numbers a_i , i = 1, 2, ..., n, define

arithmetic mean:
$$a_A = \frac{1}{n}(a_1 + \dots + a_n),$$

geometric mean: $a_G = (a_1 \times \dots \times a_n)^{1/n},$
harmonic mean: $a_H = \frac{1}{\frac{1}{n}(\frac{1}{a_1} + \dots + \frac{1}{a_n})}.$

Use Jensen's Inequality to prove that $a_H \leq a_G \leq a_A$. (Hint: Use the log() function.)

Question 4 (10 points)

Prove that, if $X_n \xrightarrow{L^s} X$ and $s > r \ge 1$, then $X_n \xrightarrow{L^r} X$. (Hint: Use Hölder's Inequality.)

Question 5 (10 points)

Prove that, if $X_n \xrightarrow{L^r} X$ for $r \ge 1$, then $\mathbb{E}[|X_n|^r] \to \mathbb{E}[|X|^r]$. (Hint: Use Minkowski's Inequality. Also note that for a sequence of numbers a_1, a_2, \ldots , and a continuous function f(), as $n \to \infty$, $a_n \to a$ implies that $f(a_n) \to f(a)$.)

Question 6 (10 points)

Prove that S^2 is an unbiased estimator of σ^2 , i.e., $\mathbb{E}[S^2] = \sigma^2$, but S is a biased estimator of σ , i.e., $\mathbb{E}[S] \neq \sigma$. (Hint: Use Jensen's Inequality.)

Question 7 (10 points)

Prove that \bar{X} is independent of S^2 in the normal distribution case. To make it simple, only consider the case where sample size n = 2. (Note: For general case, the analysis is more tedious, but the intuition behind is similar.) (Hint: Try to show that \bar{X} is a function only of $X_1 + X_2$ and S^2 is a function only of $X_2 - X_1$.)

Question 8 (10 points)

Prove that $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$ in the normal distribution case. [Hint: Let S_n^2 denote the sample variance when the sample size is n. First show that $\frac{S_2^2}{\sigma^2} \sim \chi_1^2$. Then reach the conclusion for $\frac{(n-1)S_n^2}{\sigma^2}$ by induction.]

Question 9 (10 points)

Prove the Weak Law of Large Numbers with iid assumption and $\sigma^2 < \infty$. (Hint: Use Chebyshev's Inequality.)

Question 10 (10 points)

Recall the Numerical Integration example in Lec 1 page 27/32. Let $Y_N = \frac{b-a}{N} [f(X_1) + \cdots + f(X_N)]$. Prove that: (1) $\mathbb{E}[Y_N] = \int_a^b f(x) dx$; and (2) $Y_N \xrightarrow{a.s.} \int_a^b f(x) dx$ as $N \to \infty$.