MEM6804 Modeling and Simulation for Logistics and Supply Chain: Theory \& Analysis

Sino-US Global Logistics Institute
Shanghai Jiao Tong University

Spring 2021 (full-time)

Assignment 2

Due Date: April 7 (in class)

Instruction

(a) You can answer in English or Chinese or both.
(b) Show enough intermediate steps.
(c) Write your answers independently.

Question 1 (10 points)

Use Hölder's Inequality to prove that, for real numbers $a_{i}, b_{i}, i=1,2, \ldots, n$, and positive real numbers p and q such that $1 / p+1 / q=1$,

$$
\sum_{i=1}^{n}\left|a_{i} b_{i}\right| \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|b_{i}\right|^{q}\right)^{1 / q}
$$

Question 2 (10 points)
Use Minkowski's Inequality to prove that, for real numbers $a_{i}, b_{i}, i=1,2, \ldots, n$, and real number $p \geq 1$,

$$
\left(\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{p}\right)^{1 / p} \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}+\left(\sum_{i=1}^{n}\left|b_{i}\right|^{p}\right)^{1 / p} .
$$

Question 3 (10 points)
For positive real numbers $a_{i}, i=1,2, \ldots, n$, define

$$
\begin{aligned}
\text { arithmetic mean: } a_{A} & =\frac{1}{n}\left(a_{1}+\cdots+a_{n}\right) \\
\text { geometric mean: } a_{G} & =\left(a_{1} \times \cdots \times a_{n}\right)^{1 / n} \\
\text { harmonic mean: } a_{H} & =\frac{1}{\frac{1}{n}\left(\frac{1}{a_{1}}+\cdots+\frac{1}{a_{n}}\right)}
\end{aligned}
$$

Use Jensen's Inequality to prove that $a_{H} \leq a_{G} \leq a_{A}$. (Hint: Use the $\log ()$ function.)

Question 4 (10 points)
Prove that, if $X_{n} \xrightarrow{L^{s}} X$ and $s>r \geq 1$, then $X_{n} \xrightarrow{L^{r}} X$. (Hint: Use Hölder's Inequality.)
Question 5 (10 points)
Prove that, if $X_{n} \xrightarrow{L^{r}} X$ for $r \geq 1$, then $\mathbb{E}\left[\left|X_{n}\right|^{r}\right] \rightarrow \mathbb{E}\left[|X|^{r}\right]$. (Hint: Use Minkowski's Inequality. Also note that for a sequence of numbers a_{1}, a_{2}, \ldots, and a continuous function $f()$, as $n \rightarrow \infty, a_{n} \rightarrow a$ implies that $f\left(a_{n}\right) \rightarrow f(a)$.)

Question 6 (10 points)
Prove that S^{2} is an unbiased estimator of σ^{2}, i.e., $\mathbb{E}\left[S^{2}\right]=\sigma^{2}$, but S is a biased estimator of σ, i.e., $\mathbb{E}[S] \neq \sigma$. (Hint: Use Jensen's Inequality.)

Question 7 (10 points)
Prove that \bar{X} is independent of S^{2} in the normal distribution case. To make it simple, only consider the case where sample size $n=2$. (Note: For general case, the analysis is more tedious, but the intuition behind is similar.) (Hint: Try to show that \bar{X} is a function only of $X_{1}+X_{2}$ and S^{2} is a function only of $X_{2}-X_{1}$.)

Question 8 (10 points)
Prove that $\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$ in the normal distribution case. [Hint: Let S_{n}^{2} denote the sample variance when the sample size is n. First show that $\frac{S_{2}^{2}}{\sigma^{2}} \sim \chi_{1}^{2}$. Then reach the conclusion for $\frac{(n-1) S_{n}^{2}}{\sigma^{2}}$ by induction.]

Question 9 (10 points)
Prove the Weak Law of Large Numbers with iid assumption and $\sigma^{2}<\infty$. (Hint: Use Chebyshev's Inequality.)

Question 10 (10 points)
Recall the Numerical Integration example in Lec 1 page 27/32. Let $Y_{N}=\frac{b-a}{N}\left[f\left(X_{1}\right)+\right.$ $\left.\cdots+f\left(X_{N}\right)\right]$. Prove that: (1) $\mathbb{E}\left[Y_{N}\right]=\int_{a}^{b} f(x) \mathrm{d} x$; and (2) $Y_{N} \xrightarrow{\text { a.s. }} \int_{a}^{b} f(x) \mathrm{d} x$ as $N \rightarrow \infty$.

